

Hadronic final states in high-p_T QCD with the CMS detector

Suvadeep Bose

University of Nebraska Lincoln (On behalf of CMS collaboration)

Outline

- ☐ Introduction
- Inclusive Jet production
 - at 7 TeV, at 8 TeV
 - AK5/AK7 ratio
- □ Dijet Production
 - Differential cross section at 7 TeV, at 8 TeV
 - Dijet mass and jet substructure
- Multi-jet Production
 - Colour coherence
 - 3-Jet Mass cross section
 - 3-jet to 2-jet cross section Ratio
 - Measurement of α_S

All data from published results are posted on the Durham database: http://hepdata.cedar.ac.uk/

For all public results in CMS Standard Model Physics: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

Why do we care about QCD?

- ☐ It is interesting
 - very rich theory: deserves exploration and understanding
- ☐ It is inevitable
 - hadron collisions: QCD is always present
- Important background for new physics searches
 - enormous cross section: QCD can hide many possible signals of new physics
- Introduces uncertainties on other measurements
 - e.g. uncertainties on the PDFs affect the Higgs properties
- With LHC data
 - probing new territory

Total weight 14000 t

15 m Diameter

Length 28.7 m

CMS: the detector

76k scintillating **ECAL** PbWO₄ crystals

HCAL Scintillator/brass

Interleaved ~7k ch

MUON

ENDCAPS 473 Cathode Strip Chambers (CSC) 432 Resistive Plate Chambers (RPC)

ISMD 2013 Suvadeep Bose

480 Resistive Plate Chambers (RPC)

Thanks LHC for Fantastic 3 years!

Jet Reconstruction

Particle-Flow (PF) algorithms use:

e, μ , γ , charged & neutral hadrons as building blocks for jets, b-jets, τ 's, ν (miss E_T)

☐ Fixed cone algorithms:

- ♦ Iterative Cone (CMS) / JetClu (ATLAS)
- ♦ Seedless Infrared Safe Cone (SISCone)

Successive recombination algorithms:

$$d_{ij} = p_{T,i}^{2p}$$
 $d_{ij} = \min(p_{T,i}^{2p}, p_{T,j}^{2p}) \frac{\Delta R_{ij}^2}{D^2}$

- Soft particles will first cluster with hard particles before among themselves
- Almost a cone jet near hard partons
- No merge/split

Jet Energy Calibration

- Jet Energy Correction is necessary to measure the correct energy spectrum of Jets
- The main three type of corrections required are OffSet (pile up subtraction),

Relative(for η dependent response) and Absolute(for p_T dependent response) +

Residual corrections. [JINST 6 (2011) P11002]

- Offset -> Subtracting
- Relative -> Dijet balance

- Absolute \rightarrow γ + jet and Z + jet (p_T balance, MPF)

Jet p_⊤ Resolution JEC unc vs η @ E=1 TeV CMS preliminary, L = 11 fb⁻¹ √s=7 TeV, L=35.9 pb¹ CMS preliminary 2010 resolution total systematic uncertainty **PFJets** Total uncertainty $(Anti-k_R=0.5)$ MC truth (c-term added) Absolute scale 0.3 0 < lndl ≤ 0.5 → Relative scale Extrapolation - Pile-up, NPV=14 - Jet flavor <u>a</u> 0.2 → Time stability Anti-k₊ R=0.5 PF E=1000 GeV 0.1 50 100 200 p_ [GeV] CMS DP-2013/011

ISMD 2013

JEC (Jet Energy Correction)

uncertainty ~1% for central

Inclusive Jet Production

Inclusive Jet Cross Section @ 7 TeV
 [QCD-11-004]

Phys. Rev. D 87 (2013) 112002

- Inclusive Jet Cross Section @ 8 TeV
 [SMP-12-012, FSQ-12-031]
- Inclusive jet AK5/AK7 cross section ratio @ 7 TeV [SMP-13-002]

The Legacy Measurement

- Inclusive jet production probes the dynamics of QCD
- counting the number of jets as a function of rapidity and p_T stringent test of QCD
- PDFs, strong coupling constant, perturbative calculations

Inclusive Jet Differential Cross section @ 7 TeV

- Double differential Inclusive jet crosssection measured from p_T 0.1 to 2 TeV
- Measured cross sections agree with the predictions of perturbative QCD at next-to-leading order obtained with five different PDF sets
- Theoretical and experimental uncertainties are comparable, even at the limits of the experimental phase space

Inclusive Jet Differential Cross section @ 8 TeV

SMP-12-012 FSQ-12-031

- Measurement at 8 TeV up to |y| = 4.7
- □ O(14) magnitude in cross section
- ☐ Comparisons to pQCD NLO⊗NP

[NP: corrections for non-perturbative effects (MPI and hadronization):

20% (~100 GeV) → 1% (~2.5 TeV)]

Theory Comparisons

CMS Preliminary

Jet p_ (GeV)

2000

NNPDF 2.1

200

SMP-12-012

Experimental uncertainty:

- JES(12%-30%),
- Luminosity(4.4%)
- Unfolding(1%-10%)
- Total: 15%-40%

Theory uncertainty:

- PDF(5%-30%)
- Scale(5%-40%)

PDF uncertainty for CT10 in outer bins 100%

Comparison among Different PDFs

- Data over theory compared to ratio with other PDF sets for CT10
- ☐ The theory predictions are computed for five different PDF sets, viz. ABM11, HERA1.5, CT10, MSTW2008, NNPDF2.1
- ☐ In the central rapidity region (0.0<|y|<0.5) different theory predictions are in agreement with data except ABM11
- ☐ The fluctuations are covered by total theoretical and experimental uncertainty bands

Inclusive Jet AK5/AK7 Cross Section Ratio

- ☐ Motivation: AK5/Ak5 ratio gives insight to QCD effect beyond fixed order
- Measurement at √s=7 TeV with different jet sizes R=0.5 (AK5), 0.7 (AK7)
- \square Ratio of cross sections R(0.5, 0.7) vs p_T and rapidity

- ☐ Several systematic uncertainties cancel in ratio
- ☐ The ratio gradually increases towards unity with increasing Jet-p_T.
- □ Powheg(NLO+PS) prediction has the describes the data best

Dijet Production

- Dijet Differential Cross Section
 @ 7 TeV [QCD-11-004]
 Phys. Rev. D 87 (2013) 112002
- Dijets and V+jets, jet mass and substructure at 7 TeV [SMP-12-019]
 JHEP 05 (2013) 090

Dijet Cross Section @ 7 TeV

Ratio to NNPDF2.1

- ☐ Reach up to M_{ii} ~ 5.5 TeV
- ☐ Complementary to Inclusive jets
- □ Agreement with pQCD@NLO⊗NP

Dijet Mass and Jet Substructure

 \Box Differential distributions in jet mass for inclusive dijet events, defined through the anti-k_T algorithm for a size parameter of 0.7 for jets groomed through filtering,

The intrinsic stability of these algorithms to pileup effects contribute to a more rapid and widespread use of these techniques in future high-luminosity runs at the LHC.

- Better agreement at larger jet masses.
- Trimming and pruning algorithms provide an important benchmark for their use in searches for massive particles.
- ➤ More details in Ivan Marchesini's talk on Jet substructure (Today at 3 pm)

MultiJet Production

- Colour Coherence [SMP-12-010]
- 3-Jet Mass cross section [SMP-12-027]
- 3/2 Inclusive Jet Cross section Ratio [QCD-11-003] <u>arXiv:1304.7498</u>
- Measurement of α_S [SMP-12-027, QCD-11-003]

Colour Coherence Effect

- In QCD color coherence effects are due to the interference of soft gluon radiation emitted along color connected partons
- ☐ In LO model with FSR radiation the 3rd jet tends to be between second jet and proton

remnant

 $lue{}$ Measure the angular distribution of softer 3rd jet around the 2nd highest-p_T jet in the event

$$\beta = \tan^{-1} \left[\frac{\operatorname{sign}(\eta_2) \Delta \phi_{32}}{\Delta \eta_{32}} \right]$$

β=0: 3rd jet between 2nd & closest proton remnant

 β = π : 3rd jet between 2nd & far most proton remnant

- Ideally, e+ e- collider is the best place to do the measurement
 - No color interference from the initial state
- In pp, both initial and final states have color constituents
 - Complicate the signatures
 - Comparison with MC is crucial
- Compare data to event generators with different color coherence implementations

Colour Coherence Results

- ☐ Data are unfolded to the particle level
- \Box The data exhibit a clear enhancement of events compared with the PYTHIA and MADGRAPH generators near the event plane (β = 0) and a suppression in the transverse plane (β = $\pi/2$)

- Comparisons of the β
 distributions to various MC
 predictions
 - Herwig++ describes the data β distributions best
- □ Data clearly support larger color coherence effects in Pythia 6

3-Jet Mass Cross Sections @ 7 TeV

Measurement of double diffrential cross section: $d^2\sigma/dm_3dy_{max}$

- sensitivity to PDFs and α_S
- \Box $m_3^2 = (p_1 + p_2 + p_3)^2 |y_{max}| = max(|y_1|, |y_2|, |y_3|) Q = m_3/2$
- \square Require jet $p_T > 100 \text{ GeV}$
- \square Regions: $|y_{max}| < 1$ and $1 < |y_{max}| < 2$ reach up to $m_3 \sim 3$ TeV
- ☐ Agreement with pQCD @ NLOxNP (NP correction 8% -> 1%)
 - Deviations observed with NLO + ABM11 PDFs

SMP-12-027

Ratio to NLO (CT10-NLO)

Ratio to NLO (CT10-NNLO)

3-jet over 2-jet Cross Section Ratio

$$R_{32} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma(pp \to n \text{ jets } + X; \ n \ge 3)}{\sigma(pp \to n \text{ jets } + X; \ n \ge 2)} \quad \text{vs } \left\langle p_{T1,2} \right\rangle = \frac{p_{T1} + p_{T2}}{2}$$

- **1** Cross section ratio R_{32} :
 - inclusive 3-jet over 2-jet production
 - sensitive to α_s
 - Multiple alternative phase-space options
 - depending on the cut imposed on the 3rd jet p_T
 - expressed vs. different observables
 - measuring the α_S : vital to reduce scale uncertainty

Measurement of α_S

- Extract α_S from the R_{32} and 3-jet mass cross section measurements
 - Results are comparable with world average $\alpha_s(M_z)$ = 0.1184 ± 0.0007
 - For the first time probing the > 1 TeV scale, reaching up to ~ 1.5 TeV
- Dominated by theoretical uncertainties (PDF and scale)

 R_{32} : $\alpha_{\rm S}(M_z) = 0.1148 \pm 0.0014 \text{ (exp.)} \pm 0.0018 \text{ (PDF)}^{+0.0050}_{-0.0000} \text{ (scale)}$

3-jet mass: $\alpha_s(M_z) = 0.1160 + 0.0025 - 0.0023$ (exp, PDF, NP)+0.0068_{-0.0021} (scale)

Conclusions and Outlook

- ☐ Significant ongoing effort to improve our understanding of QCD
 - both experimental and theoretical
 - rich QCD programs pursued LHC
- ☐ Large datasets available
 - LHC has provided access to a huge phase space
 - will take a long time to analyze and digest all the data on tape
- Much recent progress
 - jet data have considerable impact on gluon and u/d quark PDFs
 - measurements of $\alpha_{\rm S}$ at the TeV scale for the first time
- Comments on the theoretical tools
 - in many areas the exp. precision reached makes the NLO predictions insufficient: NNLO needed for further progress!!
 - with some tuning of the parameters, the LO ME or NLO interfaced with PS models provide good description of the data